The Role of Passion, Need Satisfaction, and Conflict
in Athletes’ Perceptions of Burnout

Maxime Lopes
Robert J. Vallerand
Université du Québec à Montréal

February 16th, 2020

Maxime Lopes, PhD Student
Département de Psychologie
Université du Québec à Montréal
PO Box 8888, Station Centre-Ville
Montreal (Quebec), H3C 3P8, Canada
Phone: (438) 765-2392
E-mail: maxime.lopes@uqam.ca

Declarations of interest: none

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
PASSION AND ATHLETES’ PERCEPTIONS OF BURNOUT

Abstract

This research examined the role of harmonious and obsessive passion in athletes’ perceptions of burnout. Two studies using correlational designs were carried out with different samples of athletes of varied skill levels. In Study 1, we found that obsessive passion was positively, and harmonious passion negatively, associated with burnout perceptions in athletes. Results of Study 2 replicated the findings of Study 1 and in addition used Structural Equation Modeling analyses to support the mediating role of conflict and need satisfaction in the relation between types of passion for sport and athletes’ perceptions of burnout. Furthermore, it was found that harmonious passion for a second activity was associated with lower athletes’ perceptions of burnout; while obsessive passion for a second activity was directly associated with it. The results have important implications for theory and research on passion as well as burnout in sport.

Keywords: Athlete Burnout; Harmonious Passion; Obsessive Passion; Need Satisfaction; Conflict
The Role of Passion, Need Satisfaction, and Conflict in Athletes’ Perceptions of Burnout

February 16th, 2020

Declarations of interest: none
The Role of Passion, Need Satisfaction, and Conflict in Athletes’ Perceptions of Burnout

Athlete burnout leads to several problems that include performance decrements as well as feeling depressed, frustrated, demotivated, and exhausted (Gustafsson, Kenttä, & Hassmén, 2011b; Lemyre, Hall, & Roberts, 2008). In the sport domain, it has been estimated that between six to eleven percent of athletes may suffer from high burnout levels (Eklund & Cresswell, 2007; Raedeke, 1997), a condition that is known to affect not only elite but also amateur athletes (Cresswell & Eklund, 2005b). It is thus a matter of great importance to provide athletes, coaches, and sport organizations with valuable knowledge that may prevent its occurrence. In this paper we address this issue of athlete burnout through the lens of the concept of passion (Vallerand, 2015; Vallerand & Verner-Filion, in press).

The concept of burnout takes its origins in occupational settings with Maslach and Pines (1977) and has been adapted to the sporting context by Raedeke (1997). It is described as a syndrome with three key dimensions: (a) emotional and physical exhaustion, which refers to a negative response to the intense demands of training and competition (b) sport devaluation, which corresponds to a loss of interest and desire to engage in one’s sport, and (c) reduced sense of accomplishment, in terms of sport skills and abilities (see also Raedeke & Smith, 2009).

When athletes suffer from burnout, they typically experience chronic fatigue, poor sleep patterns, mood disturbance, and episodes of depression and helplessness (Gould & Dieffenbach, 2002; Kenttä & Hassmén, 2002). Not surprisingly, their performance and well-being are considerably impaired. Burned out athletes may necessitate several months or even years to reach full recovery. Therefore, investigation of the antecedents of burnout that may lead to its prevention is especially important. Researchers have employed several conceptual approaches to explain athlete burnout (Eklund, & DeFreese, 2015; Gustafsson, DeFreese, &
Madigan, 2017). The motivational perspective has been extensively used as to understand why athletes burn out (e.g., Cresswell & Eklund, 2005a; Gustafsson, Hassmén, & Hassmén, 2011a; Lemyre et al., 2008; Martin & Horn, 2013). This is because to succeed in sport, being highly motivated to the extent of feeling passionate is very important. This strong motivational force toward the beloved activity may account for why athletes devote extensive time and energy training while staying motivated over time. Consequently, based on past research (Curran, Appleton, Hill, & Hall, 2011; Gustafsson et al., 2011a), we believe that the concept of passion for sport should allow us to better understand the processes leading athletes to experience burnout symptoms in sport.

Passion in Sport

The dualistic model of passion (DMP; Vallerand, 2015) defines passion as a strong inclination toward an activity that is important, that people love, value, engage in on a regular basis and is self-defining. This model further proposes the existence of two types of passion. Harmonious passion (HP) results from an autonomous internalization, that is when people have freely accepted the activity that they love as being important without any contingencies attached to it (Mageau, Carpentier, & Vallerand, 2011; Vallerand, & Houlfort, 2003). The activity thus occupies a significant, but not overwhelming, space in identity and remains under the control of the individual. Hence, with HP, a runner might run out of love for the activity without any sense of obligation, allowing positive activity experience to occur, while being in harmony with other important life domains. Obsessive passion (OP) in contrast results from a controlled internalization and is associated with the experience of a loss of control with regards to the beloved activity. Thus, a runner with an OP might run because he or she loves the activity but also because of inner contingencies, such as the desire to validate or protect one’s self-worth (Vallerand, 2015). With OP, individuals face an uncontrollable urge to partake in the activity that they love and find enjoyable, as activity engagement is out
of control. Consequently, activity engagement is not fully positive and the activity conflicts with other life activities. Much research, including sports research (for a review see Vallerand & Verner-Filion, in press), provides support for the Dualistic Model of Passion, showing that HP is generally associated with adaptive outcomes whereas OP has been associated with less adaptive outcomes, or even maladaptive ones (for reviews, see Curran, Hill, Appleton, Vallerand, & Standage, 2015; Vallerand, 2015; Vallerand & Houlfort, 2019).

Passion and Athletes’ Perceptions of Burnout

In light of the above reasoning, HP should allow one to remain fully involved in the passionate activity without becoming obsessive about the beloved activity and thus, there should be little burnout. Conversely, OP should lead one to go beyond the limit, to overspend one’s energy, and thus to experience burnout symptoms. Much research, especially in the work domain supports this hypothesis (e.g., Vallerand, Paquet, Philippe, & Charest, 2010). In the sport context, research also supports this analysis as HP is negatively associated with burnout, whereas OP is either unrelated or positively related to burnout (e.g., Curran et al., 2011; Gustafsson et al., 2011a; Martin & Horn, 2013). Given that the two types of passion for sport may make burnout more or less likely, an important next step is to understand why this may be so by identifying potential mechanisms.

The Mediating Role of Conflict and Basic Psychological Need Satisfaction

The burnout model proposed by Vallerand et al. (2010) posits that a personal characteristic (HP and OP) predicts the occurrence of a contributing (conflict) and a protective (positive activity experiences) factor of burnout. To begin with OP, one likely mediator of its contributory effect on athlete burnout should be the psychological conflict experienced between sport passion and other life activities (e.g., family activities). Because with OP one experiences an uncontrollable urge to engage in the passionate activity, it becomes very difficult for the person to fully disengage from thoughts about the activity, even when such an
engagement is detrimental to other goals or activities in the person's life (Vallerand et al., 2003). Consequently, because the activity takes all the space in the person’s life, OP has been found to lead to conflict with other activities (e.g., Caudroit, Boiché, Stephan, Le Scanff, & Trouilloud, 2011; Vallerand et al., 2003, Study 1; Vallerand et al., 2010; Young, de Jong, & Medic, 2015). Conversely, with HP, the person can physically and mentally disengage from the passionate activity, thereby allowing the person to replenish him- or herself as well as preventing the experience of conflict with other activities (or people).

A second set of psychological processes in the Vallerand et al. (2010) model refers to protective factors. Vallerand et al. (2010) had proposed and empirically shown that positive activity experiences such as satisfaction with the activity protect against burnout. In this regard, much research has shown that need satisfaction (Ryan & Deci, 2017) represents a major form of adaptive activity satisfaction. According to self-determination theory (SDT; Ryan & Deci, 2017) there are three basic psychological that are defined as “innate psychological nutriments that are essential for ongoing psychological growth, integrity, and well-being” (Deci & Ryan, 2000, p. 229). Autonomy is defined as the need to feel volitional and authentic in one’s actions; competence reflects the need to feel effective and efficacious in challenging endeavors; relatedness refers to a feeling of being secure and connected with valued significant others (Deci & Ryan, 2000). A major implication of the needs framework is the claim that satisfying all three basic needs is necessary for people to actualize their potential, to flourish, and to be protected from ill health and maladaptive functioning (Sheldon & Niemiec, 2006). While need satisfaction has been shown to promote energy, autonomous motivation, positive emotions, well-being, and performance, its absence has been linked to the development of many forms of psychopathology and even negative physical health, motivational undermining, and decreased wellness (e.g., Baard, Deci, & Ryan, 2004; Ryan & Deci, 2017; Tay & Diener, 2011). Therefore, in the sport context, need satisfaction should
serve to protect athletes from high levels of burnout symptoms (Hodge, Lonsdale, & Ng, 2008; Li, Wang, Pyun, & Kee, 2013; Quested, & Duda, 2011).

Much research supports the role of passion in need satisfaction (see Curran et al., 2015 for a meta-analysis) both in sport and exercise (e.g., Akehurst & Oliver, 2014; Curran, Appleton, Hill, & Hall, 2013; Parastatidou, Doganis, Theodorakis, & Vlachopoulos, 2012) and in other life domains (e.g., Houlfort et al., 2015; Philippe, Vallerand, Houlfort, Lavigne, & Donahue, 2010; Przybylski, Weinstein, Ryan, & Rigby, 2009; Vallerand, 2015). Such research reveals that when participation in sport is fueled by HP, individuals may experience a greater sense of personal causation, perceptions of competence, and connectedness with others within the activity. OP, in contrast, does not readily facilitate the fulfillment of basic psychological needs or at least not to the same extent as HP (Lalande et al., 2017). This is because, with OP, engagement is fueled by a sense of compulsion (i.e., “I have the impression that my activity controls me”; Vallerand, & Houlfort, 2003) and a defensive ego-involved style (Lafrenière, Bélanger, Sedikides, & Vallerand, 2011; Mageau et al., 2011). Thus, although with OP athletes may experience some sense of need satisfaction while engaging in their sport (e.g., Akehurst & Oliver, 2014; Lalande et al., 2017; Parastatidou et al., 2012; Verner-Filion, Vallerand, Amiot, & Mocanu, 2017), it should be lower than that associated with HP (see Lalande et al., 2017) and may even be negative (Houlfort et al., 2015; Przybylski et al., 2009).

Finally, only one study has assessed the role of passion for sport in need satisfaction and burnout. In this study, Curran et al. (2013) provided support for the mediating role of need satisfaction between passion and burnout in athletes. Specifically, they found HP to positively predict need satisfaction that in turn was negatively associated with athlete burnout. Although the path involving OP and need satisfaction was positive, it did not reach significance ($\beta = .04$, $p > .05$). This study therefore provides support for the contributory nature of HP to need
satisfaction and its protective function in athlete burnout but leaves open the potential role of OP in this process.

The Role of a Second Activity

Research over the past 10 years or so has underscored the importance of incorporating the role of other activities in the understanding of burnout. Vallerand (1997, 2001) has long posited that we needed to take into account other life activities in order to better understand and predict motivational processes and outcomes in a given activity such as sport burnout. Indeed, athletes spend a large amount of time pursuing activities outside of their sport (e.g., working, gaming, reading, hiking). For instance, amateur athletes often deal with a full-time job (or studies) besides their sport commitment. These other activities may play a role in burnout. For instance, workers who engage in recovery activities after work are likely to experience fewer symptoms of exhaustion than workers who do not do so (e.g., Sonnentag, 2001; Sonnentag & Fritz, 2007). Additionally, Stanton-Rich and Iso-Ahola (1998) found that engaging in satisfying leisure behaviors and self-determined activities reduced or prevented burnout among clergy. In the sports context, Kellmann et al. (2018) suggest that partaking in other activities (i.e., proactive approach to recovery) out of a high level of self-determination might act as a buffer against sport induced fatigue.

Of importance, research reveals that the type of passion that one has for the primary activity plays a role in engaging or not in other life activities and thereby reducing burnout. Specifically, Donahue et al. (2012) found that HP for work was positively associated with recovery experiences leading to lower levels of exhaustion at work. By contrast, OP for work led workers to disengage from recovery experiences and consequently to experience more exhaustion symptoms. Finally, other research has gone even further by empirically showing that while most people display passion for more than one activity, only those who display HP
for a second activity will experience psychological benefits from such engagement

(Schellenberg & Bailis, 2015).

The Present Research

The purpose of the present research was to build up on past research and to test the role of passion in athletes’ perceptions of burnout. This was done in two studies. In the first study, we ascertained the relationships between sport passion and athletes’ perceptions of burnout within a large sample of mainly endurance athletes with varied skill levels. Based on past research (e.g., Gustafsson et al., 2011b; Martin & Horn, 2013), we argued that OP for one’s sport should be positively associated with burnout perceptions whereas HP should negatively relate with it.

In Study 2, we proposed to test an extended version of the Vallerand et al. (2010) burnout model for sport in line with the above review. Based on this model, we propose that passion for sport plays an important role in sport burnout. Specifically, sport engagement fueled by OP will lead athletes to rigidly engage in sport at the expense of other life activities, to experience conflict between sport and other such activities and at some point to become mentally and physically stale and develop burnout. Further, with OP, athletes do not derive as much positive sport experiences such as need satisfaction (Curran et al., 2013), and do not benefit as much from their protective functions against burnout. Conversely, with HP one engages in sport more flexibly and as such can fully experience need satisfaction in sport and is also less likely to experience conflict between sport and other activities. Thus, with HP for sport, athletes are protected against burnout. But there is more. Beyond sport, passion for other life activities should be negatively associated with athletes’ perceptions of burnout specifically when such passion is harmonious in nature. Athletes with a HP for a second activity will then experience need satisfaction in this other activity and thus be protected even further against burnout. Such should not be the case with OP for sport as it should prevent full
engagement and need satisfaction in this second activity and negate the protective role of this second activity. In sum, passion for sport and for another important life activity should play a key role in sports that may either trigger or protect athletes against burnout.

Study 1

The purpose of Study 1 was to investigate the cross-sectional associations between sport passion and athletes’ perceptions of burnout. In line with past research (Martin & Horn, 2013; Schellenberg, Gaudreau, & Crocker, 2013), we posited that the type of passion that athletes have for their sport is of prime importance for sport burnout. Specifically, it was hypothesized that OP would be positively associated with athletes’ perceptions of burnout whereas HP would be negatively related to it.

Method

Participants and Procedure

To determine the total sample size to detect a significant effect of passion on athlete burnout within multiple regression analyses, G*Power software was used to conduct a power analysis. Because past studies on the passion-burnout relationship (e.g., Curran et al., 2011; Curran et al., 2013) found OP to be less associated with burnout than HP, we therefore averaged the effect sizes found in the literature ($R^2 = .04$ for OP). The analysis revealed that, for a power of .80 at an alpha of .05, 193 participants were needed. Participants in Study 1 were 224 athletes (75 females, 149 men) with a mean age of 33.91 years ($SD = 10.23$ years), including 94 French-Canadians from the Province of Quebec, 105 French, and 25 participants from other French-speaking countries. They trained on average 7.03 hours per week ($SD = 3.33$ hours) and had been involved in their sport for an average of 9.72 years ($SD = 7.91$ years). Athletes participated in three main sports: running (n = 75), badminton (n = 75), and triathlon (n = 43), and 31 athletes practiced other sports. Athletes in this sample had different sport backgrounds, with 80% (n=186) of athletes who still competed in their sport, 7% (n=15)
who no longer competed, and 13% (n=32) who had never competed. We also assessed the
athlete’s level of expertise with one self-report item: “What is the highest level you have
reached in your sport?”. Participants were situated across the performance continuum:
beginners (n=72, 32%), local athletes (n = 61, 27%), regional athletes (n = 63, 28%), national
athletes (n = 19, 9%), and international athletes (n = 9, 4%).

Participants were recruited online through three outlets. First, study information and a
survey link was posted on several sports forum, for instance www.courseapied.net was used
to invite runners to take part in an online study on sport and attitude. Second, study
information was posted on several sport-related Facebook groups. Finally, many individuals
who viewed the study information on social media outlets shared the original post among
their own networks, which led reaching a broader network of potential participants. The
questionnaires took approximately 30 minutes to complete.

Measures

All scales listed below were completed on a 7-point Likert scale ranging from 1
(Strongly disagree) to 7 (Strongly agree). The same Likert scale was used for all instruments
used throughout the manuscript, unless otherwise indicated.

Passion for sport. Participants named their favorite sport, “that they love, in which
they invest a lot of time, and that is important for them” and completed the Passion Scale
while referring to this activity (Marsh et al., 2013; Vallerand, & Houlfort, 2003) in reference
to their sport. For this Study, a short version of the passion scale was used (Trépanier, Fernet,
Austin, Forest, & Vallerand, 2014). The items assessing harmonious passion are « This
activity is in harmony with the other activities in my life », « This activity is in harmony with
other things that are part of me » and « My activity is well integrated in my life » (M = 5.64,
SD = 0.92, α = .80). The items assessing obsessive passion are « I have almost an obsessive
feeling for this activity », « This activity is the only thing that really turns me on » and « I
have the feeling that my work controls me» (M = 3.80, SD = 1.28, α = .70). Five passion criterion items assessed whether participants were passionate or not toward their sport. Items were “I spend a lot of time doing this activity”, “I like this activity”, “This activity is important for me”, “This activity is a passion for me” and, “This activity is part of who I am” (M = 6.21, SD = .68, α = .71). All participants scored above the midpoint (4) on the 7-point response scale and were thus deemed passionate (Vallerand, 2015, pp. 77-78; Vallerand & Houlfort, 2003). The Passion Scale (including the short version of the scale; see Lafrenière, Vallerand, Donahue, & Lavigne, 2009; Philippe, Vallerand, Bernard-Desrosiers, Guilbault, & Rajotte, 2017) has displayed high levels of validity and reliability with respect to a variety of activities and contexts (see Marsh et al., 2013; Vallerand, 2015, chapter 4).

Burnout. The French validation of the Athlete Burnout Questionnaire (ABQ; Raedeke & Smith, 2009) conducted by Isoard-Gautheur, Oger, Guillet, & Martin-Krumm, 2010) was used to assess athletes’ perceptions of burnout. The questionnaire “Questionnaire du Burnout Sportif” (QBS) is a 12-item self-report inventory that contains three subscales, namely: emotional and physical exhaustion (4 items; e.g., « I feel so tired from my training that I have trouble finding energy to do other things »), devaluation (4 items; e.g., « I don’t care as much about my sport performance as I used to »), and reduced sense of accomplishment (4 items; e.g., « I am not performing up to my ability in sport »). Items were answered on a 7-point rating scale ranging from 1 = “never” to 7 = “always”. Empirical support for the reliability and validity of the ABQ test scores has been reviewed by Raedeke and Smith (2009) and by Cresswell and Eklund (2007). In Study 1, a burnout index was computed by averaging the three burnout subscales as is often done by sport researchers (e.g., Pacewicz, Mellano, & Smith (2019). Cronbach’s alpha coefficient was .84.

Results
Table 1 reports the means, standard deviations, correlations, and Cronbach’s alpha for all Study 1 variables. Preliminary analyses revealed that OP and weekly hours of training were moderately correlated ($r = .32$), suggesting that the higher the athletes’ OP, the more they devoted hours to training. The correlation with HP was not significant. Furthermore, an independent-samples t-test was conducted to compare men and women on OP and HP. Men reported significantly higher levels of HP ($M = 5.88$, $SD = .98$) than women ($M = 5.52$, $SD = .87$); $t(22) = 2.71$, $p = .007$. Men also reported being more obsessive ($M = 3.92$, $SD = 1.26$) than women ($M = 3.55$, $SD = 1.30$); $t(222) = -2.06$, $p = .041$. These results suggested that we include both gender and weekly training hours as control variables in the subsequent analyses.

The main objective of Study 1 was to examine whether HP and OP would be respectively negatively and positively associated with athletes’ burnout perceptions. A multiple regression analysis was conducted with age, sex, and weekly hours of training and work as control variables. These variables were all entered at Step 1 whereas HP and OP were entered at Step 2. A hierarchical regression analysis was conducted with burnout as the dependent variable (see Table 2 for detailed results). At Step 1, age was negatively associated with burnout whereas gender (female = 0; male = 1) was positively, although marginally, associated with it revealing that men reported higher levels of burnout symptoms than women. Furthermore, weekly hours of training was positively associated with burnout. All these control variables explained 5% of the variance of burnout. At Step 2, controlling for the above variables, HP was the strongest predictor of burnout ($\beta = -.28$, $p < .001$), whereas OP was significantly and positively associated with it ($\beta = .23$, $p < .001$). This second model explained an additional 13% of the variance in athlete burnout.

In sum, similarly to Curran et al. (2013), we found HP for sport to be negatively associated with athlete burnout over and above training load and other control variables. However, contrary to Curran et al. (2013) that found a non-significant relationship between
OP and athletes’ perceptions of burnout, our findings revealed that OP was positively associated with burnout. Finally, these findings are also in line with other research on burnout both in the sports (e.g., Gustafsson et al., 2011a) and work domains (e.g., Carbonneau, Vallerand, Fernet, & Guay, 2008; Vallerand et al., 2010).

Study 2

In Study 2, we had two major objectives. First, we sought to replicate the findings of Study 1 with another sample of athletes. Second, Study 2 sought to test the extended Vallerand et al. (2010) model of burnout with athletes while controlling for weekly hours of training. Based on the extended burnout model, it was hypothesized that OP for sport would be positively, while HP would be negatively, related to conflict between sport and other life activities. Also, both HP and OP for sport were expected to be positively related to need satisfaction in sport, although the path from OP was expected to be lower in magnitude than those involving HP. This model also included a second passionate activity and its relationships with athlete burnout through conflict and need satisfaction in sport in this second activity. The exact same hypotheses were made for passion and need satisfaction for the second activity. Cross-activity paths were also hypothesized to unfold between passion and need satisfaction. For instance, HP for sport was expected to be positively associated with need satisfaction in the second activity and similarly for HP for the second activity and need satisfaction in sport. This is because HP is associated with flexibility and disengagement (Vallerand, 2015). Conversely, OP for both sport and the second activity were expected to be either negatively associated or unrelated to need satisfaction in the cross-activity. This is because with OP, athletes demonstrate a rigidity that is unlikely to lead to psychological benefits from engagement in another activity (see Vallerand, 2015, p. 129). Finally, conflict was expected to positively, and need satisfaction both for sport and the second activity to negatively, relate to burnout. Based on Vallerand et al. (2010) model, a full-mediation model
was postulated, thus, direct paths between types of passion and athlete burnout were not modeled (see Figure 1).

Method

Participants and Procedure

A Monte Carlo analysis was conducted with Mplus to estimate the required sample size. A minimal power of .80 was deemed adequate. Based on past studies on the effect of passion, conflict, need satisfaction and athlete burnout (Curran et al., 2013; Li et al., 2013; Vallerand et al., 2010) standardized regression coefficients between .10 and .50 were expected. The analysis unveiled that a sample size of 310 participants would yield power between .80 and .91 to detect significant coefficients between .10 and .50 for all the hypothesized associations. A total of 342 participants were recruited.

In Study 2, we incorporated four attention check items to identify and remove careless responders. We excluded participants (n = 11) if they missed two bogus items or more (e.g. “Please respond 5 for this question”). We also excluded 15 participants who reported being less than 18 years old. After excluding those participants, we had a final sample size of 316. Participants were 129 females and 187 men with a mean age of 39.00 years (SD = 12.37 years), they were 165 French Canadians from the Province of Quebec, 133 French and 18 from other French-speaking countries. On average, athletes trained 8.68 hours per week (SD = 4.90), and had been involved in their sport for 10.97 years (SD = 15.89).

Athletes participated in four main endurance sports: running (n = 122), triathlon (n = 71), cycling (n = 62), and swimming (n = 45) while 31 athletes reported to practice other sports.

As in Study 1, athletes in this sample had different backgrounds, 58% (n=183) of athletes reported to compete in their sport, 11% (n=36) no longer competed, and 31% (n=97) who had never competed. We also assessed the athlete’s level of expertise with one self-report item: “What is the highest level you have reached in your sport?”. Participants were beginner
(n=12, 4%), local athletes (n = 65, 21%), regional athletes (n = 211, 66%), national athletes (n = 22, 7%), and international athletes (n = 6, 2%). So, participants in Study were basically amateur athletes.

As Study 1, participants were recruited online through sports forum and Facebook. They were invited to take part in an online study on sport and attitude that took 20 minutes to complete on average. They completed measures of passion, conflict, need satisfaction, and burnout. They were also asked to indicate a second activity that they loved, that was important to them, and in which they invest a significant amount of time on a regular basis. With respect to this second passionate activity, descriptive analysis revealed that 25% reported to engage in other sports (e.g., ski, hockey, snowboarding), 24% spent time in creative, cultural or cognitive activities (e.g., reading, gaming, watching TV, listening to music, photography), 20% reported being passionate for their job or their studies, 17% engaged in social activities (e.g., dancing, family time, friends time, travelling), 9% in domestic activities (e.g., cooking, taking care of my children, tinkering), 5% in physical activities that weren’t sport (e.g. yoga or walking). Finally, 2% engaged in spiritual activities such as meditation or volunteering.

Measures

Passion for one’s sport. In Study 2 we used the full Passion Scale (Vallerand et al., 2003) which consists of six HP items (e.g., « Running is in harmony with the other activities in my life »; M = 5.87, SD = 0.75, α = .73) and six OP items (e.g., « I have almost an obsessive feeling for running »; M = 3.34, SD = 1.31, α = .83). To make the items more specific, the words “my activity” were replaced with the athlete specified sport. As in Study 1, all participants scored above the midpoint (4) on the 7-point responses scale on the passion criterion index (M = 5.91, SD = .86, α = .80), and were thus deemed to be passionate for their sport.
Passion for a second activity. Participants were then told to “name another activity that you love, that is important to you, and in which you invest a significant amount of time on a regular basis,” (the definition of passion). The full Passion Scale was used to assess passion for the second activity which also consisted of six HP items (e.g., « This second activity is in harmony with the other activities in my life »; $M = 5.74$, $SD = .94$, $\alpha = .82$) and six OP items (e.g., « This second activity is the only thing that really turns me on »; $M = 2.80$, $SD = 1.39$, $\alpha = .84$). The passion criterion index for this second activity ($M = 5.64$, $SD = .94$, $\alpha = .71$), revealed that 5 participants had scores just below the midpoint (4), specifically between 3.6 and 4 on the 7-point Likert scale. These participants were kept in the analyses given that the results did not change when they were removed.

Need satisfaction in sport. Nine items were used to assess the three basic psychological needs. Three autonomy items (e.g. “In running, I usually feel free to make my own decisions”) were adapted from the Perceived Autonomy in Life Domains Scale (Blais, Vallerand, & Lachance, 1990). Competence (e.g. “Overall, I believe I’m a competent runner”) was assessed using three items from the Perceived Competence in Life Domains Scale (Losier, Vallerand, & Blais, 1993). Finally, we used the Basic Psychological Needs Scale in Sports (Gillet, Rosnet, & Vallerand, 2008) to assess relatedness (e.g. “I get along with people in running”). Scales were adapted to fit the athlete’s specific sport. An index averaging all three needs in sport was therefore computed, as it is commonly done by sport researchers (e.g., Curran et al., 2013; Verner-Filion et al., 2017), and in other domains (e.g., Aelterman, Vansteenkiste, Van Keer, & Haerens, 2016; Lalande et al., 2017). Cronbach’s alpha coefficient for this index was .68.

Need satisfaction in the second activity. The same items that served to measure need satisfaction in sport were also used to measure basic need with respect to the second activity
Conflict. Conflict between sport and other life spheres was assessed with five items measuring the extent to which athletes’ sport engagement conflicted with other important activities in their life. This questionnaire was adapted from Vallerand et al. (2010), and to make the items more specific, the words “my activity” were replaced with the sport specified by the athlete. A sample item is “Running conflicts with the other activities in my life.”, “I sometimes sacrifice my private life to run” or “I sometimes think that I spend too much time running and not enough in my private life.” In the present study, a principal component analysis yielded one factor accounting for 60% of the variance, with factor loadings ranging from .55 to .92. The alpha coefficient in this study was .82.

Burnout. Athletes’ perceptions of burnout was assessed using the same scale as in Study 1. One index score was calculated by averaging the three burnout dimensions. The Cronbach’s alpha coefficient was .85.

Data Analysis
To test the proposed model, a path analysis was conducted with Mplus 8 (Muthén & Muthén, 1998-2016) with Maximum Likelihood as the method of estimation. Prior to analyses, all variables included in the subsequent path analysis were examined for accuracy of data entry, missing data, and fit between their distributions and the assumptions underlying maximum likelihood procedures (Tabachnick & Fidell, 2007). Indirect effects were tested using the bias-corrected bootstrap method (5000 samples with 95% bias-corrected confidence intervals (CIs)). Models fit was assessed using the comparative fit index (CFI), Tucker-Lewis index (TLI), root mean square error of approximation (RMSEA), and standardized root mean squared residual (SRMR). According to Tabachnick and Fidell (2007), the CFI and TLI
should be 0.95 or higher, while the RMSEA and SRMR should be 0.06 or lower for acceptable model fit.

Results

Table 3 reports the means, standard deviations, correlations and Cronbach’s alpha among all study 2 variables. The model to be tested posited that HP would be negatively associated with athletes’ perceptions of burnout through its positive and negative relationships with need satisfaction and conflict, respectively. In contrast, OP should be positively associated with athletes’ perceptions of burnout through the same mediating variables. First, OP and HP for sport were positively associated with weekly hours of training ($r=.16$, $p<.01$; $r=.12$, $p<.05$). The same relationship was found between OP and weekly hours of training in the second activity ($r=.27$, $p<.001$). Given that training load might contribute to burnout in sport (Goodger, Gorely, Lavallee, & Harwood, 2007), we statistically controlled for this variable. Prior to testing the final model, we also tested to include control variables such as age, sex, sport, and weekly hours in 2nd activity as exogenous variables. However, model fits and betas did not significantly change when these variables were removed from the model. Hence for sake of clarity and parsimony, we removed them from the final model. Data also revealed that 10 participants reported to be more passionate toward their second activity. We therefore tested the same model controlling for the passion criteron indices for sport and for the second activity, as well as removing these 10 participants. Path coefficients and model fits did not significantly change. Therefore all participants were included in the final model.

Overall, the proposed model had an excellent fit to the data. The chi-square value was non-significant, χ^2 (df = 7, N = 316) = 10.78, $p = 0.05$, and other fit indices were excellent: comparative fit index (CFI) = .98, Tucker-Lewis Index (TLI) = .93, root mean squared error of approximation (RMSEA) = .05 [.01, .10] and standardized root mean square (SRMR) = .02. Figure 2 shows only predicted paths that were statistically significant at the p < .05 level.
The analysis of direct effects revealed that HP for sport was positively associated with need satisfaction in sport ($\beta = .38$, $p < .001$) but negatively with conflict ($\beta = -.21$, $p < .001$).

As for OP for sport, it was positively associated with need satisfaction in sport ($\beta = .19$, $p < .001$) and with conflict ($\beta = .55$, $p < .001$). Turning to the second activity, HP was positively associated with need satisfaction in the second activity ($\beta = .53$, $p < .001$). OP for a second activity was not significantly associated with the mediating variables. With regard to the cross-activity relationships, OP for sport was negatively associated with need satisfaction in the second activity ($\beta = -.12$, $p < .05$) whereas a positive association between HP for a second activity and need satisfaction in sport was obtained ($\beta = .18$, $p < .001$). The two other cross-over relationships involving HP for sport and need satisfaction in the second activity and OP for the second activity and need satisfaction in sport were not significant. Turning to the mediators, need satisfaction in sport ($\beta_s < -.19$, $p < .001$) and in the second activity ($\beta_s < -.20$, $p < .001$) were negatively associated with athletes’ perceptions of burnout whereas conflict was positively associated with burnout ($\beta = .19$, $p < .001$). Finally, Weekly hours of training were associated with conflict but not with athlete burnout. These findings appear in Figure 2.

Overall, the present results provide support for the proposed model linking OP and HP to conflict and need satisfaction as mediators of the relationship between passion and athletes’ perceptions of burnout. These findings also highlight the mixed results between OP for sport that was found to be positively associated with burnout through conflict, but negatively through need satisfaction. However, the total indirect effect (see Table 4) revealed that, taken as a whole, sport OP was positively associated with burnout in athletes whereas HP was negatively associated with it through the satisfaction of psychological needs.

We also tested two alternative models. In the first one, we tested a model in which need satisfaction and conflict were positioned as predictors of burnout with HP’s and OP’s as mediating variables (Need Satisfaction/Conflict \rightarrow HP/OP \rightarrow Burnout). Results of this
alternative model revealed poor fit indices χ^2 (df = 5, N = 316) = 62.96, $p < 0.001$, RMSEA = .19. The second alternative model assessed the proposal that HP and OP predicted need satisfaction and conflict through burnout. (HP/OP → Burnout → Need Satisfaction/Conflict).

Results of this alternative model also revealed poor fit indices χ^2 (df = 23, N = 316) = 311.26, $p < 0.001$, RMSEA = .20. In sum, the results from these two alternative models suggest that the hypothesized model should be preferred.

General Discussion

The primary purpose of this research was to test the role of passion for sport in athletes’ perceptions of burnout in two studies. A second goal of this research was to test an extended version of the passion model of burnout (Vallerand et al., 2010). This model seeks to understand the psychological processes underlying the passion-burnout relationship, including contributory factors (conflict between sport and other life activities) and protective factors (need satisfaction in sport). Furthermore, this model also posits that involvement in a second passionate activity can also affect burnout. Such effects can either reduce or exacerbate athletes’ perceptions of burnout, depending on the type of passion for the activity, through the need satisfaction it provides in the second activity. Results from Study 1 provided support for the role of passion in burnout and those of Study 2 for the extended passion model of burnout. These results were obtained while statistically controlling for training volume and lead to a number of implications.

The Role of Passion in Athletes’ Perceptions of Burnout

A first implication of the present findings is that passion is involved in burnout in sport. Consistent with past research (e.g., Gustafsson, 2007), these findings suggest that burnout in sport might be less a matter of training volume than a matter of quality of sport engagement. Indeed, the findings of both studies showed that statistically controlling for training load, OP for sport was found to be positively associated with athletes’ perceptions of
burnout whereas HP was negatively associated with it. Thus, the type of engagement
(harmonious vs obsessive) that individuals display while engaging in sport matters greatly
with respect to athlete burnout.

These findings are in line with past research on the relationship between passion and
burnout in sport which demonstrates that OP may have adverse effects on athlete burnout
(e.g., Gustafsson et al., 2011a) whereas HP seems to prevent its occurrence (e.g., Curran et al.,
2013; Moen, Myhre, & Stiles, 2016). Furthermore, the present findings are also in accord with
past research on burnout at work (e.g., Carbonneau et al., 2008; Donahue et al., 2012;
Vallerand et al., 2010) that has shown the adaptive and maladaptive functions of HP and OP,
respectively. Finally, these findings are coherent with those from dozens of studies on the
diametrically opposed role of HP and OP in a number of adaptive and maladaptive outcomes
in a number of life domains (e.g., Curran et al., 2015; Vallerand, 2010, 2015; Vallerand &
Houlfort, 2019), including sport (see Vallerand & Verner-Filion, in press).
The Mediating Role of Conflict and Basic Psychological Need Satisfaction

Support for the extended passion model of burnout provides with a better
understanding of the psychological processes involved in facilitating burnout or protecting
against it. Thus, a second implication of the present findings is the important mediational role
of need satisfaction and conflict in the passion-burnout relationship. First, as hypothesized,
Study 2 demonstrated that the experience of conflict - between sport and other life domains -
as well as a lack of need satisfaction in sport, was positively associated with athletes’
perceptions of burnout. Specifically, we found that sport OP was positively associated with
conflict. This is because athletes with OP are - to a certain degree - single-minded in their
pursuit of the beloved activity. Accordingly, they may spend a lot of mental energy thinking
relentlessly about their sport. The indirect path between sport OP and burnout through conflict
(OP \rightarrow \text{Conflict} \rightarrow \text{Burnout}) was among the strongest indirect effect of the model.
Conversely, HP was negatively associated with conflict, thereby suggesting a protective function of HP in burnout. These findings are the first to replicate in sports those of Vallerand et al. (2010) on the role of conflict as a key mediator between passion and burnout at work.

The second mechanism that mediates the effects of passion on burnout is need satisfaction in sport. The results of Study 2 showed that although OP was positively associated with need satisfaction, the relationship was significantly lower than that of HP. Therefore, with HP athletes are more likely to be more fully involved in their sport experience (Vallerand & Verner-Filion, in press) allowing them to experience higher levels of need satisfaction in sport, thus making burnout in sport less likely. The positive relationship between sport OP and psychological need satisfaction in sport is in line with that observed in the Lalande et al. (2017) series of four studies that showed that both HP and OP were positively associated with need satisfaction in the passionate activity, although the relationship with HP was statistically more important than that involving OP.

The fulfillment of basic psychological needs would appear to provide athletes with positive psychological resources that are hypothesized to reduce athletes’ perceptions of burnout. Findings from Study 2 supported this claim and revealed that HP for sport was positively associated with greater psychological need satisfaction that, in turn, was negatively associated with athletes’ perceptions of burnout. It should be noted that OP was also positively associated with need satisfaction, although less so than HP. These findings are in line with the work from Li et al.’s. (2013) meta-analysis in the sport domain that showed that basic psychological need satisfaction is negatively related to athlete burnout.

Of additional interest, the positive role of OP in both conflict and need satisfaction underscores the complex nature of OP (see Vallerand, 2015), which is sometimes adaptive (through need satisfaction) and sometimes maladaptive (through conflict). Altogether, although OP may contribute to some extent to need satisfaction, its contribution was much
less than HP and its relationship with conflict was more important than that involving need satisfaction. As such, overall, OP seems to be more involved in the contribution of burnout than in its protection.

The Role of Passion for a Second Activity in Burnout

A final implication of the present findings deals with the role of passion for a second activity in athletes’ perceptions of burnout. The one key message here is that being passionate for a second activity does not necessarily make athletes’ perceptions of burnout less likely. Rather, it depends on the type of passion that underlies activity engagement. Indeed, OP for a second activity was directly and positively associated with athletes’ perceptions of burnout, whereas HP for a second activity was negatively associated with it. It should be noted that, based on past research (e.g., Martin & Horn, 2013; Trépanier, et al., 2014) which found a significant and positive relationship between OP and burnout and modification indices, a direct path from OP for the second activity to burnout ($\beta = .19, p < .001$) was modeled a posteriori to exhibit the positive relationship between OP for the second activity and burnout.

These findings are also in line with Schellenberg and Bailis (2015) who found that having OP for two activities leads to the most negative effects, whereas having a HP for two different activities is even more beneficial than having simply one HP.

Of importance is the finding that HP for a second activity was associated with lower athletes’ burnout perceptions through the fulfillment of psychological need in sport and in the second activity. This new contribution provides support for the extended model on passion and burnout and adds to the present literature on passion and burnout in the sport context.

Specifically, the present findings reveal that HP for a second activity may make athletes’ perceptions of burnout less likely through its positive association with psychological need satisfaction both in sport and outside. In this regard, it should be noted that HP for the second activity displayed the strongest indirect effect on athlete burnout through need satisfaction in
the second activity (HP2 → NS2 → Burnout). This finding suggests that HP for a second activity may have an even stronger protective effect on athlete burnout through need satisfaction in the second activity than that of HP for sport through need satisfaction for sport. In other words, athlete burnout may be reduced by developing an HP for a second life activity. This is consistent with other research suggesting that burnout in sports is caused by both sport-related-stressors and stressors outside sport (e.g., Gustafsson et al., 2011a). Furthermore, although recovery was not measured in this research, this finding is in line with research from Donahue et al. (2012) who found that HP for work was positively associated with recovery experiences leading to lower levels of emotional exhaustion at work.

With regard to the cross-activity associations, one reason why HP for the second activity may facilitate psychological need satisfaction in sport has to do with the flexibility that HP entails (Vallerand, 2015). Contrary to OP, with HP one does not ruminate about the passionate activity when doing something else (Vallerand et al., 2003). This allows the person to fully engage in other activities and to derive psychological benefits from such engagement (Carpentier, Mageau, & Vallerand, 2012).

The present findings have practical implications for athletes, parents, coaches, and other sport participants regarding suggestions as to how to prevent or reduce burnout. A first one is to create a sport environment that facilitates HP. This may be done by supporting the autonomy and self-determination of athletes (Mageau et al., 2009), by focusing on mastery goals at the expense of performance approach and avoidance goals (Vallerand et al., 2007, 2008), and by allowing athletes to use their strengths in the process of seeking growth (Dubreuil, Forest, & Courcy, 2014; Dubreuil et al., 2016). A second avenue to reduce burnout is to encourage athletes to engage in a second activity out of HP. Too often coaches and parents promote a tunnel vision of sports, do not support engagement in other activities, and encourage sport selection and specialization too early. To the contrary, the present findings
suggest that engagement in other activities is to be encouraged and promoted. Once one has
engaged in sports and activities for several hours, it is time to engage in other fruitful and
meaningful life activities. One will not be any worse for it, quite the contrary! Adaptive
benefits may take place, especially if engagement in other activities is fueled by HP
(Schellenberg & Bailis, 2015). Need satisfaction in other life pursuits should then make the
sport training process more satisfying and less exhausting in the long term.

Limitations

Some limitations need to be considered. First, the two studies from this research used a
cross-sectional design. Although past research using designs where passion was
experimentally induced leads to the same findings as correlational designs (see Bélanger,
Lafrenière, Vallerand, & Kruglanski, 2013; Lafrenière, Vallerand, & Sedikides, 2013), such
manipulation was not used here and therefore causality cannot be inferred. Second, all data
collected were self-report in nature, which increases the risk of common shared method
variance among variables. To reduce the bias that such methodological practice induces,
future research should use longitudinal designs as well as additional measures to complement
athletes' self-report. For instance, athlete burnout may be assessed through informant reports
such as the coach or the parents, or by using biological markers such as heart variability,
serum or saliva cortisol (Deneva, Ianakiev, & Keskinova, 2019; Wekenborg et al., 2019).
Third, the findings of Study 2 revealed that OP for a second activity was directly and
positively related to athletes’ perceptions of burnout. This finding suggests that it is likely that
unidentified mediators were at play. Thus, future research should look at other mediating
variables. One likely mediator may be the conflict (see Vallerand et al., 2003) experienced
between the second passionate activity and other life domains. In addition, other research
reveals that psychological need thwarting represents a predictor or certain maladaptive
outcomes including burnout (Bartholomew, Ntoumanis, Ryan, & Thøgersen-Ntoumani, 2011;
Warburton, Wang, Bartholomew, Tuff, & Bishop, 2019). Consequently, future research on the role of passion in burnout in sport may address this issue by examining need frustration in addition to need satisfaction. Finally, while the present research used a process model approach to the study of burnout, it should be noted that, recently, some passion researchers such as Schellenberg, et al. (2019) have begun to study how sub-types of passion relate with outcomes. Therefore, researchers are encouraged to use alternative approaches to offers complementary viewpoint and broader understanding of the passion-athlete burnout relationship.

Despite these limitations, the present findings suggest that OP may play a contributory role in athletes’ burnout, whereas HP seems to play a protective role. Furthermore, the differential role of HP and OP in burnout seems to be mediated by psychological need satisfaction and conflict, respectively. Finally, of particular additional importance is the crucial finding that only HP for a second passionate activity may have a salutary protective effect against burnout. Indeed, OP for a second activity may even exacerbate burnout. Future research along those lines using the extended model on passion and burnout is encouraged in order to promote a better understanding and prevention of burnout in sport.
References

https://doi.org/10.1080/02640414.2013.823223

https://doi.org/10.1080/17461391.2010.536573

https://doi.org/10.1016/j.jvb.2015.02.005

support, activity specialization, and identification with the activity. *Journal of personality*, 77(3), 601-646. 10.1111/j.1467-6494.2009.00559.x

doi:10.1037/pspp0000116

for an activity and quality of interpersonal relationships: The mediating role of
doi:10.1037/a0018017

play: Background and consequences of harmonious versus obsessive engagement in video

test of basic needs theory. Psychology of Sport and Exercise, 12(2), 159-167.
doi:10.1016/j.psychsport.2010.09.003

https://doi.org/10.1123/jsep.19.4,396

Information Technology.

With Changes in Burnout and Goal Attainment in Collegiate Volleyball Players. Journal of
Sport and Exercise Psychology, 35(3), 270-280. doi:10.1123/jsep.35.3.270

Multiple Passions on Subjective Well-Being and Momentary Emotions. Journal of Happiness
Studies, 16(6), 1365-1381. doi:10.1007/s10902-014-9564-x

Table 1. *Descriptive Statistics, Internal Reliabilities and Pearson Correlations for Variables (Study 1)*

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HP</td>
<td>5.64</td>
<td>.92</td>
<td>(.80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. OP</td>
<td>3.80</td>
<td>1.28</td>
<td>-.11</td>
<td>(.70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Total Burnout</td>
<td>2.68</td>
<td>.96</td>
<td>-.32**</td>
<td>.25**</td>
<td>(.85)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Weekly hours of training</td>
<td>7.03</td>
<td>3.33</td>
<td>.04</td>
<td>.32**</td>
<td>-.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Weekly hours of work</td>
<td>32.52</td>
<td>13.91</td>
<td>.02</td>
<td>-.09</td>
<td>-.08</td>
<td>-.17*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Age</td>
<td>33.91</td>
<td>10.23</td>
<td>.04</td>
<td>-.06</td>
<td>-.22**</td>
<td>.07</td>
<td>.33**</td>
<td></td>
</tr>
<tr>
<td>7. Sex (0 = f; 1 = m)</td>
<td>-</td>
<td>-</td>
<td>-.18**</td>
<td>.14*</td>
<td>.12</td>
<td>.21**</td>
<td>.00</td>
<td>-.03</td>
</tr>
</tbody>
</table>

N = 224
* p < .05, ** p < .01. Alphas of Cronbach are on the diagonal.
Table 2. Hierarchical Regression Analysis of Athlete Perceived Burnout on Age, Sex, Weekly Hours of Work and Training, and HP and OP (Study 1)

<table>
<thead>
<tr>
<th>Step</th>
<th>Independent variables</th>
<th>β</th>
<th>p</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age</td>
<td>-.20</td>
<td>< .01</td>
<td>-2.91</td>
<td>[-.032, -.006]</td>
</tr>
<tr>
<td></td>
<td>Sex (0 = f; 1 = m)</td>
<td>.12</td>
<td>.07</td>
<td>1.82</td>
<td>[-.020, .517]</td>
</tr>
<tr>
<td></td>
<td>Weekly hours of work</td>
<td>-.02</td>
<td>.76</td>
<td>-3.1</td>
<td>[-.011, .008]</td>
</tr>
<tr>
<td></td>
<td>Weekly hours of training</td>
<td>-.03</td>
<td>.63</td>
<td>-.48</td>
<td>[-.049, .029]</td>
</tr>
</tbody>
</table>

$R^2 = .062$
$F(4, 219) = 3.59$

<table>
<thead>
<tr>
<th>Step</th>
<th>Independent variables</th>
<th>β</th>
<th>p</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Harmonious Passion for Sport</td>
<td>-.28</td>
<td>< .001</td>
<td>-4.46</td>
<td>[-.420, -.163]</td>
</tr>
<tr>
<td></td>
<td>Obsessive Passion for Sport</td>
<td>.17</td>
<td>< .001</td>
<td>3.50</td>
<td>[.074, .267]</td>
</tr>
</tbody>
</table>

$R^2 = .196$
$ΔR^2 = .13$
$F(2, 217) = 18.09$

N = 224.
CI = Confidence Interval.
Table 3. *Descriptive Statistics, Internal Reliabilities and Pearson Correlations for Variables (Study 2)*

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HP for sport</td>
<td>5.87</td>
<td>.75</td>
<td>(.73)</td>
<td></td>
</tr>
<tr>
<td>2. OP for sport</td>
<td>3.34</td>
<td>1.31</td>
<td>.21**</td>
<td>(.83)</td>
<td></td>
</tr>
<tr>
<td>3. HP for 2nd activity</td>
<td>5.74</td>
<td>.94</td>
<td>.40**</td>
<td>-.12*</td>
<td>(.82)</td>
<td></td>
</tr>
<tr>
<td>4. OP for 2nd activity</td>
<td>2.80</td>
<td>1.39</td>
<td>-.11*</td>
<td>.08</td>
<td>.17**</td>
<td>(.84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. NS in sport</td>
<td>5.45</td>
<td>.66</td>
<td>.49**</td>
<td>.24**</td>
<td>.29**</td>
<td>-.06</td>
<td>(.68)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. NS in 2nd activity</td>
<td>5.47</td>
<td>.85</td>
<td>.26**</td>
<td>-.17**</td>
<td>.58**</td>
<td>.08</td>
<td>.21**</td>
<td>(.79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Conflict</td>
<td>3.58</td>
<td>1.37</td>
<td>-.08</td>
<td>.52**</td>
<td>-.22**</td>
<td>.05</td>
<td>.05</td>
<td>.21**</td>
<td>(.82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Total Burnout</td>
<td>2.77</td>
<td>1.00</td>
<td>-.29**</td>
<td>.12**</td>
<td>-.23**</td>
<td>.18**</td>
<td>-.23**</td>
<td>-.28**</td>
<td>.26**</td>
<td>(.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Weekly hours of training</td>
<td>8.68</td>
<td>4.90</td>
<td>.12*</td>
<td>.16**</td>
<td>-.09</td>
<td>-.05</td>
<td>.10</td>
<td>-.14*</td>
<td>.22**</td>
<td>.14*</td>
<td>.24**</td>
<td>.06</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Age</td>
<td>39.00</td>
<td>12.37</td>
<td>.02</td>
<td>-.13*</td>
<td>.06</td>
<td>-.13</td>
<td>.03</td>
<td>.11*</td>
<td>-.20**</td>
<td>-.19**</td>
<td>.21**</td>
<td>-.10</td>
<td>-.16**</td>
<td>-.05*</td>
<td></td>
</tr>
<tr>
<td>14. Sex (0 = f; 1 = m)</td>
<td>-</td>
<td>-</td>
<td>-.10</td>
<td>.04</td>
<td>-.07</td>
<td>.14*</td>
<td>-.01</td>
<td>-.04</td>
<td>.04</td>
<td>.02</td>
<td>.02</td>
<td>.01</td>
<td>.02</td>
<td>.15**</td>
<td>.03</td>
</tr>
</tbody>
</table>

N = 316.

* p < .05, ** p < .01. Alphas of Cronbach are on the diagonal.
Table 4. Bootstrap Estimates and 95% Confidence Intervals of the Effects of Type of Passion on Athlete Burnout through Conflict, Need Satisfaction in Sport, and Need Satisfaction in a Second Activity. (Study 2)

<table>
<thead>
<tr>
<th>Paths</th>
<th>β</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total indirect effect</td>
<td>-.13</td>
<td>[-.19, -.07]</td>
<td>p < .001</td>
</tr>
<tr>
<td>Specific indirect effect (HP1 → Conflict → Burnout)</td>
<td>-.04</td>
<td>[-.08, -.02]</td>
<td>p < .01</td>
</tr>
<tr>
<td>Specific indirect effect (HP1 → NS1 → Burnout)</td>
<td>-.07</td>
<td>[-.13, -.03]</td>
<td>p < .01</td>
</tr>
<tr>
<td>Specific indirect effect (HP1 → NS2 → Burnout)</td>
<td>-.02</td>
<td>[-.05, .00]</td>
<td>p > .05</td>
</tr>
<tr>
<td>OP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total indirect effect</td>
<td>.09</td>
<td>[.02, .17]</td>
<td>p < .01</td>
</tr>
<tr>
<td>Specific indirect effect (OP1 → Conflict → Burnout)</td>
<td>.10</td>
<td>[.05, .17]</td>
<td>p < .001</td>
</tr>
<tr>
<td>Specific indirect effect (OP1 → NS1 → Burnout)</td>
<td>-.04</td>
<td>[-.07, -.01]</td>
<td>p < .05</td>
</tr>
<tr>
<td>Specific indirect effect (OP1 → NS2 → Burnout)</td>
<td>.03</td>
<td>[.01, .06]</td>
<td>p < .05</td>
</tr>
<tr>
<td>HP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total indirect effect</td>
<td>-.14</td>
<td>[-.21, -.08]</td>
<td>p < .001</td>
</tr>
<tr>
<td>Specific indirect effect (HP2 → NS1 → Burnout)</td>
<td>-.03</td>
<td>[-.08, -.01]</td>
<td>p < .05</td>
</tr>
<tr>
<td>Specific indirect effect (HP2 → NS2 → Burnout)</td>
<td>-.11</td>
<td>[-.18, -.05]</td>
<td>p < .01</td>
</tr>
<tr>
<td>OP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct effect (OP2 → Burnout)</td>
<td>.19</td>
<td>[.08, .30]</td>
<td>p < .01</td>
</tr>
<tr>
<td>Total indirect effect</td>
<td>.01</td>
<td>[.02, .04]</td>
<td>p = .54</td>
</tr>
<tr>
<td>Specific indirect effect (OP2 → NS1 → Burnout)</td>
<td>.01</td>
<td>[.01, .04]</td>
<td>p = .32</td>
</tr>
<tr>
<td>Specific indirect effect (OP2 → NS2 → Burnout)</td>
<td>-.00</td>
<td>[-.03, .02]</td>
<td>p = .88</td>
</tr>
<tr>
<td>Hours of Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct effect (Hours of Training → Burnout)</td>
<td>.10</td>
<td>[.01, .22]</td>
<td>p = .14</td>
</tr>
<tr>
<td>Specific indirect effect (Hours of Training → Conflict → Burnout)</td>
<td>.03</td>
<td>[.01, .06]</td>
<td>p < .05</td>
</tr>
</tbody>
</table>

Note. HP1 = Harmonious Passion for Sport; OP1 = Obsessive Passion for Sport; HP2 = Harmonious Passion for a Second Activity; OP2 = Obsessive Passion for a Second Activity; NS1 = Need Satisfaction in Sport; NS2 = Need Satisfaction in a Second Activity; CI = Confidence Interval.
Figure 1.

Hypothesized path model of passion, basic psychological need satisfaction, conflict, and athlete burnout.

Note. dashed lines indicate a hypothesized negative relationship; the un-dashed line indicates a positive relationship.
Figure 2.

Path analysis of the relationship involving weekly hours of training, passion, need satisfaction, conflict and athlete burnout (Study 2). Path coefficients are presented as standardized coefficients.

Note. *p<.05. **p<.01. ***p<.001.
PASSION AND ATHLETES’ PERCEPTIONS OF BURNOUT

Highlights

- Passion for sport and for a second activity are associated with burnout in athletes.
- Harmonious and obsessive passion have opposite effect on athlete burnout.
- Conflict positively mediates the passion-burnout relationship.
- Need satisfaction negatively mediates the passion-burnout relationship.
- The role of a second passionate activity in athlete burnout is novel finding.
Declaration of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author (Maxime Lopes) and which has been configured to accept email from (lopes.maxime@courrier.uqam.ca)

Maxime Lopes, B.Sc.
PhD Student
Université du Québec à Montréal
lopes.maxime@courrier.uqam.ca

Robert J. Vallerand, Ph.D., FRSC
Chaire de Recherche du Canada/Canada Research Chair-1 in Motivational Processes and Optimal Functioning
Professeur de Psychologie Sociale
Professor of Social Psychology and Director
Laboratoire de Recherche sur le Comportement Social
Département de Psychologie
Université du Québec à Montréal
Vallerand.robert_j@uqam.ca